User Manual SCOS

Course Project for "Instrumentation and Measurements for Communication Systems" Prof. Gianfranco Miele

Academic Year 2018

Università degli Studi di Cassino e del Lazio Meridionale

1. Graphical User Interface	3
2. Settings	5
2.1 Device Selection	6
2.2 Measurement Type	7
3. Base Functions	9
3.1 Channel	9
3.2 Spectrum	10
3.3 I/Q	13
3.4 Signal Energy	14
4. Estimation Detection	15
4.1 False Alarm Probability	15
4.2 Calibration	16
4.3 ED	17
5. References	23

It is possibile to divide the graphical user interface of this instrument in two parts: Input/Request Section and Output Section.

The first section on the left contains all the requests, functions that an user can select.

The other section on the right, the output section, is used to display all the results.

Graphical Interface Presentation

Output Section

In the Settings Panel is possible to select the available devices for the measurements and the measurement type: single or continuous.

Device selection	USRP1	•
Measurement	③ Single	
Туре	O Continuous	

2.1 Device Selection

De	vice selection	USRP1	-
		USRP1	
n	Aeasurement	USRP2	

The Device Selection option shows the list of the connected devices that are available for performing measurements: USRP1 or USRP2.

When one of these is selected, some characteristics are shown in the output section:

- name;
- IP Address;
- features.

USRP1_ettus300	
IP Address: 10.10.9.192	
Features: RF Capabilities 2 RX, 2 TX Filter banks 70 MHz to 6 GHz frequency range Up to 56 MHz of bandwidth	

2.2 Measurement Type

The Measurement Type settings allows user to choose a single or a continuous measurement.

In single measurement setting the analysis is performed only one time and the result is updated in the output section.

In the continuous measurement setting the analysis and the result are continuously refreshed.

If single measurement type is chosen all the possible functions are shown.

	Channel	E2	
	St	oectrum	_
		Ι/Q	
	Sigr	nal Energy	
Estimati	on detection False Alarm	0.1	
	Probability		
	Ca	libration	
	Channel Type	ilibration Single Interval	
	Channel Type Channels	Single	E2 •

The same happens for the continuous case.

All the operations can be executed in a continuous way, except the calibration.

Another button, 'Stop', appears. It is necessary in order to stop the continuously execution of the desired function.

oouii	Device selection	USRP1	\sim
	Measurement Type	 ○ Single ● Contin 	
Base	Functions		
	Channel	E2	\sim
	Spe	ctrum	
	l/	Q	
	Signal	Energy	
Estim	ation detection False Alarm Probability	0.1	~
	Calil	bration	
	Calil Channel Type	oration ● Single ○ Interval	
	Calil Channel Type Channels	● Single ○ Interval E2 ✓ E	2 ~
	Calit Channel Tγpe Channels E	● Single ○ Interval E2 ✓ E	2 ~

3.1 Channel

Channel: List of TV channels available for the measurements.

With the Spectrum button is possible to perform the spectrum analysis of the input signal.

Channel	E2	•
s	Spectrum	
	1/Q	
Sig	nal Eriergy	

The output data are processed ...

ľ	Output section
	Walting for data

3.2 Spectrum

The result appears in the output section. The amplitude value is reported in dB.

The same analysis can be done in a continuous mode. The result is continuosly updated.

In this case the Stop button becomes available. When it is pressed the analysis stops and all the other functions become available.

	Channel	E2 👻	
	SI	pectrum	
		1/G	
	Sign	al Energy	
Estimati	on detection		
	False Alarm Probability	0.1 🔹	
	Ca	libration	
	Channel Type	⊖ Single ◉ Interval	
	Channels	21 • 24 •	
		ED	
	-		

3.3 I/Q

The result of the I/Q button are the I and Q components of the input analyzing signal. The operating principle of the continuous mode is the same described before for the spectrum.

Channel	E2	•
s	pectrum	
	VQ D	
Sig	nal Energy	

3.3 Signal Energy

The Signal Energy button shows the energy of the signal. Also in this case the result is visible in the output section. In the continuous mode this value is continuously refreshed.

Channel	E2	-
	Spectrum	
	.1/9	
s	ignal Energy	

Output section
Signal energy= -39.858887 dB/Hz

4.1 False Alarm Probability

In this section is possible to perform a calibration of the instrument to set the threshold value used in the error detection operation for detecting if a channel is free or not.

A False Alarm Probability can be selected, from 0.1 up to 0.9, in order to generate a threshold value. FAP = 0.1 corresponds to the highest threshold value. FAP = 0.9 corresponds to the lowest threshold value.

4.2 Calibration

Functions Panel.

After that a False Alarm Probability value is chosen, it is possible to perform a calibration. The calibration is evaluated considering the channel chosen in the Base

After single Channel option is selected, clicking on ED button is possible to perform an error detection and know if the channel is busy or free using the threshold value obtained from calibration process.

False Alarm Probability	0.1		•
Ga	libration		
Channel Type	€ Single ○ Interval		
Channels	21 👻	62	-
	FR		

In the left side of the output section appears a plot. In this plot the xaxis represents the frequencies while the yaxis gives a value equal to 0 if the channel is free or equal to 1 if it is busy. In the right side of the output section additional informations are logged:

- acquisition data;
- time of the measurement;
- locations of the selected device;
- frequency;
- bandwidth;
- state of the channel.

Selecting Interval in Channel Type options and specifying the start and stop channel the ED procedure is performed for each selected channel.

The error detection operation is applied for each channel.

The channel estimation can be executed in a continuous mode, selecting in the Setting Panel continuous measurement type and in the Estimation detection an interval of channels to analyze.

The project is developed using:

- Matlab;
- Gnu Radio.